Heat Transfer in Ultrafast Laser Tissue Welding
نویسندگان
چکیده
* Corresponding author, [email protected] ABSTRACT The objective of this research is to develop an appropriate model for simulating the transient heat transfer processes in tissue welding subject to irradiation of ultrashort laser pulses. The ultrafast laser tissue welding process is modeled in three steps. First, there is an immediate local temperature response due to radiation absorption during an ultrashort time period. The transient discrete ordinate method is employed to simulate the ultrashort laser pulse transport in tissue. The temporal radiation field is obtained and the lumped method is used for predicting the local temperature response. After a stable local temperature profile is achieved, the second step starts, in which the hyperbolic heat conduction model is adopted to describe the heat transfer. The thermal wave behavior is observed. It is found that the hyperbolic wave model predicts a higher temperature rise than the classical diffusion model. After about five thermal relaxation times the thermal wave behavior is substantially weakened and the heat diffusion predominates. The heat diffusion equation can accurately describe the heat transfer thereafter.
منابع مشابه
Discrete Ordinates Method for Transient Radiation Transfer in Cylindrical Enclosures
The Discrete Ordinates Method (DOM) for solving transient radiation transfer equation in cylindrical coordinates is developed for radiation heat transfer in participating turbid media in pico-scale time domain. The application problems addressed here are laser tissue welding and soldering. The novelty of this study lies with the use of ultrashort laser pulses as the irradiation source. The char...
متن کاملNumerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملNumerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملUltrafast Radiative Transfer Characteristics in Multilayer Inhomogeneous 3d Media Subjected to a Collimated Short Square Pulse Train
The advent of ultrafast lasers has brought many new applications, in particular in biomedicines and material processing, such as laser tissue ablation (Huang and Guo, 2010; Jiao and Guo, 2011), laser tissue soldering and welding (Kim and Guo, 2004), protein shock (Sajjadi et al., 2013), thermal response (Jiao and Guo, 2009), and the detection of tumors by using an exogenous fl uorescence agent ...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کامل